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SUMMARY

A turbojet-engine-exhaust simulator which utilizes a hydrogen per-

oxide gas generator has been developed for powered-model testing in wind

tunnels with air exchange. Catalytic decomposition of concentrated

hydrogen peroxide provides a convenient and easily controlled method of

providing a hot jet with characteristics that correspond closely to the

jet of a gas turbine engine.

The problems associated with simulation of jet exhausts in a tran-

sonic wind tunnel which led to the selection of a liquid monopropellant

are discussed. The operation of the jet simulator consisting of a thrust

balance, gas generator, exit nozzle, and auxiliary control system is

described. Static-test data obtained with convergent nozzles are pre-

sented and shown to be in good agreement with ideal calculated values.

INTRODUCTION

It has long been recognized that jet effects are responsible for a

number of the differences between drag_ stability, and loads results

obtained in flight tests and in the usual wind-tunnel investigations.

Because of the importance of these effects, methods for simulating Jets

were developed for subsonic tunnels (ref. i), for supersonic tunnels

(refs. 2 and 3), and for rocket models (ref. 4). The problem of simula-

tion at transonic speeds, however, was found to be more difficult because

of the much greater importance of support interference effects (refs. 5

and 6). The use of air or air-fuel-combustion systems (ref. 7) would

require large induction pipes which must be enclosed in thick support
members and would lead to increased transonic support interference.

A simulation scheme that would permit detailed study of installation

problems and jet interference effects for complete or essentially complete

models was desired. The primary characteristics desired were large model



size, minimumsupport interference, and sufficiently close duplication
of turbojet exhaust characteristics to permit valid studies of the
interactions of such a Jet with both internal and external flows.

After consideration was given to several methods of producing a hot
Jet that would simulate the characteristics of turbojet-englne exhausts,
as well as to a system that would require a minimumof space inside the
model and support, the liquid monopropellsnt hydrogen peroxide was
selected. The literature revealed that hydrogen peroxide had been used
as a successful gas generator for turbopu_p turbine drives (ref. 8).
Extensive information concerning experience with the liquid as a pro-
pellant was available (ref. 9), so that little development work appeared
to be required to adapt this system for research.

The purpose of this paper is to describe the development of a hydro-
gen peroxide turbojet-engine simulator, which can be used for powered
model testing in wind tunnels with air exchange, in supersonic blowdo_n
tunnels, or in free flight, and to indicate the necessary associated
equipment for use in the wind tunnel. The results of static tests on
someturboJet-exit-tailpipe configurations obtained by using the hydro-
gen peroxide simulator are discussed.

SYMBOLS
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CF

CF,o

Cd

d
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Jet exit area, sq ft

thrust coefficlent, Fj/q_A

static thrust coefficient, Fj/poA

mass-flow discharge coefficient, w/w i

diameter

measured Jet thrust

ideal thrust for complete isentr_pic expansion of primary flow,
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ideal convergent nozzle thrust, _ gR 7 + I Tt,j + A(pj - Po)

acceleration due to gravity, ft/sec 2

Mach number

static pressure, lb/sq ft

total pressure, lb/sq ft

dynamic pressure, lb/sq ft

gas constant, ft/°R

average radius of curvature of Jet boundary

temperature, OR

static temperature, OF

total temperature, OF

velocity, ft/sec

measured weight flow, Ib/sec

ideal weight flow for choked exit,

7+1

.f 2 V(7-1)/
Pt,J*tT-_--_J "_RTt,j

x distance from decomposition-chamber inlet

7 ratio of specific heat at constant pressure to specific heat

at constant volume

5 angle between Jet axis and tangent to free Jet boundary at

nozzle lip, deg

p mass density, slugs/cu ft

Subscripts:

c convergent nozzle

j jet
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t

barometric

total

free stream

FLOW-SIMILARITY C0NSID_qATIONS

A propulsive Jet affects the airplane through both direct reactions

and interferences. In certain free-flight and wind-tunnel stability and

performance investigations (refs. 4 and i0), complete simulation of both

items may be required. For most wind-tunnel investigations, however, it

is only necessary to reproduce the interfe:-ence effects. Primary atten-

tion was focused on this more restricted p::oblem in the development of

the jet simulation system considered herei:1. Simulation of the Jet intake

flow may not be necessary if the external _low field in the vicinity of

the exit is similar to that of the airplane. Numerous drag investigations

have provided a broad background of information concerning the interfer-

ence effects of intake flow in the transonic-speed range.

A convenient approach in an analysis }f interference effects due to

a propulsive Jet is to break down the Jet _low into two regions: the

region of the Jet bulb immediately downstream of the exit and the trailing

mixing region. With a given set of external flow conditions the initial

shape of the Jet boundary is determined mainly by the ratio of specific

heats 7 and nozzle exit pressure ratio _j/p_ of the jet flow (ref. ll).

Results from numerous investigations at th_ Langley Laboratory have indi-

cated that duplication of the slope of this segment of the Jet boundary

is all that is required in studies of the oase and boattail drag of after-

bodies without appreciable flow separation and external interference

effects associated with the initial (exit) shock. This finding is of

great practical significance with regard t_ simulator selection, inasmuch

as it permits the use of a jet with an incorrect ratio of specific heats

for a limited range of investigations, because the correct initial

boundary shape still can be obtained by operating the simulator at some

arbitrary exit pressure ratio.

The characteristics of the Jet downstream of the initial expansion

are determined by a number of internal jet-flow properties in addition

to the specific-heat ratio and the nozzle exit pressure ratio. For

example, when the external stream is supersonic, the internal Jet shock

penetrates the mixing boundary into the free stream and forms a second

external shock system downstream of the exit shock (ref. 12). When the

external flow is subsonic, the internal shock, instead of penetrating

into the external flow, reflects from the interface, so that the familiar

"shock diamonds" are formed and a somewhat wavy Jet boundary results

(ref. ll). In either case, simulation of the downstream shock structure



obviously involves reproducing the exit Machnumber and nozzle geometry,
as well as exact representation of the exit pressure ratio and ratio of
specific heats. Thls degree of simulation appears to be adequate for
most studies of downstreamshock interference effects.

Complete representation of the interference effects of the down-
stream Jet requires simulation of the mixing processes along the jet
boundary, in addition to all the items mentioned previously. These
mixing processes are governed by the viscosities, momentums,and heat-
transfer rates of the local elements of mixing flow so that complete
simulation involves essential representation of the actual Jet engine
exhaust. This degree of simulation obviously is not needed in most
flow-field studies. It maybe justified, however, in investigations
wherein flow entrainment along the Jet boundary and Jet-area-dlsplacement
effects are important factors. For example, changes in Jet temperature
have been found to have significant effects in investigations of after-
bodies with appreciable flow separation and investigations of after-
burner arrangements. In such cases, departures from complete simulation
can only be Justified on the basis of experience.

Preliminary studies on Jet effects at the Langley and Lewis
Laboratories of the NACAconsiderably clarified the nature of the
downstream-mixing and Jet-interference effects due to changes in
exhaust gas properties. After study of these findings and the flow-
similarity considerations previously discussed, it was decided that the
Jet-simulation system to be used In the Langley 16-foot transonic tunnel
must provide a hot Jet which would closely represent the flow conditions
in the immediate vicinity of the nozzle exit and would reasonably simu-
late the downstreamflow-fleld effects, yet would not compromisethe
necessary minimization of the support-interference effects.

SUITABILITYOFHYDROGENPEROXIDEFORJET SIMULATION

Study of a number of possible methods of Jet simulation led to
selection of a monopropellant (hydrogen peroxide) rocket system as
being most suitable for the use of the Langley 16-foot transonic tunnel.
This system possesses the basic advantages of compactness, small supply
lines, and ease of operation (the Jet pressure ratio is controlled by
simply varying the weight flow through the system). The products of
decomposition of H202, steam and oxygen, allow safe operation in a wind
tunnel. The amount of water added to the alrstream would not affect
the operation of either a large wind tunnel cooled by an alr exchange
system or a blowdown type of tunnel.



Physical Properties of Hydrogen Peroxide

Hydrogen peroxide is a clear liquid cxidizer with a high internal
energy content. It is used in rocketry in concentrations between 80
and 100 percent (ref. 9). The physical properties of H202 are listed
in references 9 and 13. Someof the physical properties of the mixture
of H202decomposition products are shownin figure 1. The liquid can
be decomposedcatalytically by manyheavy metals and their salts. The
chemical mechanismof hydrogen peroxide decomposition by silver catalyst
is discussed in reference 14. Someincomplete decomposition has been
experienced with concentrations of hydrogen peroxide lower than 90 per-
cent when a silver catalyst bed was used; therefore, only this commer-
cially available concentration was considered. All further reference
in this paper to H202is for a concentration of 90 percent hydrogen
peroxide by weight, with the remaining weight being pure water. Decom-
position of 90 percent H202results in an increase in volume of 9,233
times with an adiabatic decomposition temperature of 1,565° F at atmos-
pheric pressure. The molecular weight of this gas is 22.10_ and the

ratio of specific heats 7 is 1.266. The coefficient of thermal con-

ductivity is about 12.5 X lO -6, and the k_nematic viscosity calculated

for a jet total-pressure ratio of 4.20 is about 9.2 × l0 -$.

JET-FLOW CHARACTerISTICS

In order to illustrate the suitability of a hydrogen peroxide Jet

for turbojet-exhaust simulation in the Lazgley 16-foot transonic tun-

nel, H202 Jet flow characteristics have been calculated for three impor-

tant operating conditions (take-off static thrust, high subsonic cruising,

and afterburning climb flight) and are conpared in table I with corre-

sponding characteristics for an actual turbojet exhaust and for a cold

air Jet. The parameters held constant in the comparisons are t_he stream

Mach number and the Jet total-pressure ralio Pt,J/P_- The ambient con-

ditions chosen for the turbojet correspond to the actual flight condi-

tions, whereas the ambient temperature an_ pressure chosen for the

H202 simulator and cold air Jet are typical values encountered in a

transonic atmospheric wind tunnel. Zero Jntake-ducting losses, a con-

vergent nozzle, and nozzle discharge and _elocity coefficients of unity

were assumed in the calculations. Jet-boundary-shape parameters were

determined by use of the charts of refererce ll. Jet-boundary-shape

parameters for H202 were obtained by interpolation of the charts of ref-

erence ll and are presented in figure 2.

For the operating conditions considered in table I, the initial

jet-boundary-shape parameters 5 and r/dj are in reasonably close
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agreement for all three types of jets in the cruising and afterburning

flight conditions. The jet-bulb-radius parameter r/dj given for the

H202 simulator is lower than for the turbojet and cold air Jet for the

static-thrust condition. It is believed, however, that the difference

shown is unimportant, because the slope of the curves of r/dj plotted

against Pt,J/Po tends to become infinite at Jet-pressure ratios in the

neighborhood of 2.5. (See fig. 2.) As in all the other cases shown,

changing the operating pressure ratio by only a few tenths would result

in initial Jet-bulb shapes almost identical with those for the actual

turbojet exhaust.

It is interesting to note that a comparison of the kinematic vis-

cosities (a factor in the Reynolds number affecting the shear at the

jet boundary) of the hydrogen peroxide Jet and a turbojet exhaust shows

almost perfect agreement. The coefficients of thermal conductivity

which are involved in the heat transfer between the boundaries are about

lO percent higher for the hydrogen peroxide jet than for the turbojet

engine. In view of the agreement of the kinematic viscosities and the

coefficients of thermal conductivity of H202 and turbojet exhaust gases,

interface mixing phenomena are closely simulated when the thrust coeffi-

cient (ratio of Jet to stream momentums) and ratios of Jet temperature

to stream temperature are reasonably close. Thus, it appears that

internal-external flow interactions in the trailing-wake region of

interest for ejector studies can be essentially reproduced for some con-

ditions. Inasmuch as appreciable success has been experienced in corre-

lating ejector pumping characteristics for tests with various gases by

use of a simple weight-flow parameter involving the gas temperatures and

molecular weights (for example, ref. 15), the H202 Jet-simulation tech-

nique would appear to be fully adequate for ejector studies over a broad

range of test conditions where the thrust coefficients and temperature

ratios differ appreciably from the desired turbojet exhaust values.

Limits of applicability obviously will have to be established by exper-

imental comparisons, as will the usefulness of the technique for cases

in which the interference effects of the more remote Jet wake are of

importance.

The actual thrust provided by the Jet simulator generally is of

secondary importance in wind-tunnel studies. It is noted, however,

that for the static, cruising, and afterburning climb conditions of

table I, the pertinent thrust parameters for the H202 Jet (thrust per

unit jet area in the static condition and thrust coefficients for the

flight conditions) are only 14.5 percent high, 5.2 percent high, and

17_ percent low compared with the thrust parameters for the turbojet

operating conditions being simulated.



APPARATUS

The apparatus required for operating a hydrogen peroxide jet simu-
lator system must include suitable storage tanks, a flow controlling
system, and a gas-generatormexit-nozzle combination.

Becauseof corrosive effects of H202, special materials must be
used for storing and handling concentrated hydrogen peroxide. It can
be stored for long periods of time in 99.6-percent pure aluminum con-
tainers which have received a special interior-surface pickling treat-
ment to make them passive. Certain stairless steels can be used for
short-time storage containers by giving them a proper passivation treat-
ment. Reference 16 describes the passiv_.tion treatments that can be
used on suitable materials. Since hydrogen peroxide is not compatible
with manyorganic and inorganic material_, extreme caution must be used
to prevent contact with these materials. Explosive mixtures can be
formed with hydrocarbons such as gasolin_ and alcohol. Reference 16
contains safety precautions for handling and storing hydrogen peroxide.
The use of concentrated H202 as a propellant requires special equipment
and acceptable types are described in re_erences 16 and 17.

Storage and Suppl_ System

The hydrogen peroxide storage-tank J'armat the Langley 16-foot
transonic tunnel is shownin the photograph of figure 3. The tanks have
a capacity of 5,000 gallons each and are constructed of 99.6-percent
pure aluminum. The hydrogen peroxide stc.rage system is equipped with
temperature monitors and automatic alarm and flooding provisions in case
contamination occurs and disposal of the hydrogen peroxide is necessary.
The personnel, wearing special protectiw_ clothing, are shownwhile
transferring hydrogen peroxide from a st(.rage tank to the supply tank
mounted on a trailer.

The trailer-mounted hydrogen peroxice supply system is shownin
figure 4. It consists of a l,lO0-gallon temporary storage tank, a
hydrogen peroxide transfer pump, a 30-g_lon high-pressure tank, a
nitrogen pressurizing cascade, and safety" water tank, pump, shower,
and hoses. A sketch illustrating the op_ration of the trailer-mounted
portable supply system is presented in f_gure 5. This trailer is used
to transport H202from railroad tank car:_ to the storage tank farm at
Langley and to operate the H202Jet simu__ators. All transfer and supply
operations can be controlled from the tr_iler panel or from a remote
station connected with it. The hydrogen peroxide flow rate can be con-
trolled by the amountof pressure on the system and by throttling the
flow with a valve. Weight flows up to _}out 7 pounds per second at
pressures up to 1,000 ib/sq in. are indi_:ated on an electronic flowmeter.
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Safety interlocks control the operating sequence, and desired flow rates

can be established in about l0 seconds by adjusting the throttle valve

while observing the flowmeter.

Jet Simulator

The present Jet simulator consists of a thrust balance, gas gen-

erator, and tailpipe--exit-nozzle combination. A photograph of a hydro-

gen peroxide Jet simulator is shown in figure 6. Details of the simu-

lator are given in the sketch of figure 7, and some of the components

are shown in figure 8. Hydrogen peroxide enters the thrust balance

through a passage designed to eliminate liquid momentum and Bourdon tube

effects and to minimize ambient and differential heating effects. Strain

gages were mounted on webs on the sides of the vertical liquid passage.

The thrust balance and decomposition chamber were machined from one block

of high-temperature alloy to eliminate welds and chances of leakage.

The turbojet simulator utilizes a gas generator (fig. 7) in which

the liquid enters the decomposition chamber through an inlet orifice

which is designed to provide a pressure drop of about one-half the cham-

ber pressure at the design flow rate. It has been found that this pres-

sure drop will prevent pressure oscillations called chugging (ref. 18).

The catalyst bed is made up from 20-mesh O.O14-inch-diameter wire screens

of 99.6-percent pure silver activated with a samarium nitrate treatment. 1

The hydrogen peroxide gas generator units can be made in a wide range

of sizes to develop thrust outputs from 2 pounds to 400 pounds and much

greater. Figure 9 shows a series of hydrogen peroxide gas generator units

that have been developed for use in research models at the Langley

Aeronautical Laboratory of the NACA. They range in size from the small

0.5-inch-diameter unit to the 5.25-inch-diameter unit shown at the top.

These units have been developed for wing-tip reaction controls and pri-

mary jets in free-fllght models, for exhaust simulators in towing-tank

seaplane models, for multiengine Jet-lnterference models, for missile-

rocket-motor simulation, and for the turbojet-engine simulator described

herein.

_o of the convergent exit nozzle configurations that have been

statically tested with the turbojet-engine simulator are shown in fig-

ures 6 end 7- These were scaled nonafterburner nozzles corresponding

to turbojet engine exits. One type of tailpipe configuration had a

sonic throat (fig. 8) located directly behind the decomposition chamber,

which was similar to the design used in reference 4. A perforated cone

iCatalyst bed and treatment devised by BECCO Chemical Division, Food

Machinery and Chemical Corporation, Buffalo, New York.
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was installed in the tailpipe of these unit_ in order to shock the flow
to subsonic speeds and create a total pressLre loss. The throat was
eliminated in the arrangement shownin figuze V to reduce the internal
pressure at the connection between the deconposition chamberand the
tailpipe. The perforated cone was retained in somethroatless configu-
rations to damppressure pulses of unknownerigin which occurred in the
tailpipe.

STATICTESTS

The hydrogen peroxide Jet-simulator system was statically tested
to determine the agreement of the model-exit-nozzle characteristics
with those of a turbojet engine nozzle. These tests covered a range

of operation corresponding to that required for a transonic-wlnd-tunnel

model test program.

The instrumentation used during the static tests consisted of a

thrust balance, total- and static-pressure orifices located in the gas

generator and in the exit-nozzle--tailpipe (_ombination, and thermocouples

located both inside the Jet simulator and OIL the outside surface of the

unit. Pressures were measured with electri(:al transducers and transmitted

through carrier amplifiers to recording oscillographs. Thrust-balance

strain-gage output was also measured on the recorder. Temperature meas-

urements were obtained on multichaunel or pen-trace self-balancing poten-

tiometers. All tests were made by varying the flow rate of H202 through

the jet-simulator system in predetermined s_,eps of lO to 20 seconds

duration.

The estimated accuracy of the pressure measurements is ±3 percent.

Thrust measurements presented herein are es'_imated to be within 1 percent

of full scale or about ±4 pounds of thrust.

Internal Pressure_l

The first step in investigating the op_ration of the turbojet simu-

lator was to determine if the design condit_.on of a sonic exit had been

met. Figure lO shows the distribution of i]_ternal pressures along the

walls of the turbojet simulator. The circ_.ar symbols are data taken

with no shock-inducing devices in the tailp.pe. The steady increase in

static pressure at the walls and the decrea_3e in total pressure in the

passage is an indication of a series of obl:.que shocks in supersonic

flow. The flow did not become subsonic unt:.l beyond the orifice at the

19.2-1nch station, and supersonic flow pers:_sted through the entire

tailpipe for decomposltion-chamber pressures slightly higher than those

presented. It was decided, therefore, to install a perforated Cone
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(fig. 7) which was designed to induce shocks in the flow in order to
produce subsonic speeds. Data from tests with this type of cone are
shownin figure lO and indicate that the perforated cone produced the
desired subsonic flow. The solid line on the Machnumberdistribution
indicates the distribution that would be obtained from the pressure
measurementsand the area distribution. Sonic exit conditions with the
perforated cone were obtained at all pressure ratios above that required
to choke the nozzle.

A multiple-tube total-pressure rake was installed in a simulator
tailpipenexit-nozzle combination at about the 16.7-inch station. The
radial survey of the total-pressure distribution for several values of
Jet total-pressure ratio, Pt,J/Po' is shownin figure ll. These results
indicate that the total-pressure distribution is quite flat across the
section, except at the highest pressure ratios. In addition, the
boundary-layer thickness is relatively thin and should remain so as the
flow accelerates to the exit nozzle.

Temperature Surveys

The variation of temperature, both internally and externally, along
the Jet simulator is shownin figure 12, at the locations indicated on
the top sketch. Internal total temperatures were measuredwith liquid
or stagnation-type thermocouples having a high temperature-recovery fac-
tor. The variation of the temperature rise through the catalyst bed is
unknown, but a temperature increase of 1,320° F occurred from the void
space ahead of the catalyst to the chambermeasurementin back of the
bed. Discoloration of the steel of the decomposition chamber indicated
that most of the temperature increase occurred in the initial one-third
of the bed. The temperature losses through the walls of this tailpipe
were small; a decomposition temperature of 1,385° F was measuredbehind
the catalyst bed and the stagnation temperature dropped 35° F to a value
of 1,350° F at the exit measuring station. The fact that the measured
decomposition temperature was higher than the theoretical value of
1,364° F for a 90 percent concentration of H202maybe the result of a
higher concentration of }{202, and inlet temperature and decomposition-
chamberpressure higher than standard. External surface temperatures
show a more gradual rise, reaching a maximumof 1,100° F at 15 inches
from the inlet of the decomposition chamber. It should be pointed out
that the temperature variation shownexists while H202 is being decom-
posed in the system. Upon shut-off, skin temperatures on the tailpipe
decrease, but the temperatures at the upstream end of the decomposition
chamber increase as the heat flows back into the inlet system, which
has been cooled by the liquid }{202during Jet operation. The tempera-
tures of the connecting end of the thrust balance may approach 250° F,
which represents a limit for straln-gage installations. It is apparent
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that the residual heat of the Jet simulator maybe a problem when the
unit is installed inside a model near instrumentation.

Flow Measurements

Static tests with atmospheric back pressure have been conducted on
the Jet simulator system at the Langley hydrogen peroxide Jet test stand.
Weight-flow measurementsobtained from the liquid hydrogen peroxide flow-
meter are compared in figure 13 with calculated flow rates at two Jet
simulator sonic nozzles of the type shownin figure lO. The total pres-
sure and temperature measured in the decomposition chamberand in the
tailpipe were used to determine the flow rates at the throat and the
exit, respectively. Calculations for the e_it of the 3.2-inch-diameter
nozzle are not shownbelow a weight flow of 2.0 pounds per second, since
the Jet exit was not choked in this region. The measurementsof the
weight flow taken at three different points in the system are shownto
be in good agreement.

Weight-flow data for tailpipes with the throat removed (fig. 7) and
somedata from figure 13 are comparedwith liquid flowmeter measurements
in figure 14. From these data, discharge coefficients Cd (defined as
the ratio of measuredto theoretical weight flow calculated from the
exhaust-gas measurements)have been determined. The average value of
the discharge coefficient for these convergent nozzles is about 0.97,
which is consistent with usual convergent-n(zzle values (for example,
ref. 19). This correspondence is an indic_ion of uniform flow across
the exit nozzle.

The relationship between propellant weight flow and Jet pressure
ratio for various sizes of convergent nozzl_s with a hydrogen peroxide
jet-simulator system is shownin figure 15. The solid lines represent
the ideal relationship for the decompositiol, products of 90 percent
hydrogen peroxide calculated for the adiabalic decomposition temperature
of 1,364° F and standard atmospheric conditions. The linear variation
of jet pressure ratio with weight flow of propellant is illustrated for
sonic nozzle conditions. In the actual cas_, the nozzle would not be
choked below the critical pressure ratio of 1.82, and all the curves
would fair into a jet-off pressure ratio of 1.0 since the flow is zero
at this point. The test points shown(dj = 2.62 in.) are measurements
of the liquid hydrogen peroxide flow rate obtained from the electronic
flowmeter. Calculated weight flows determiILed from measuredexhaust
gas pressures and temperatures are comparedwith the flowmeter measure-
ments. The deviation of this calculated fl(_ from the ideal values is
attributable to use of the measuredJet ten_,erature which was lower
than the adiabatic decomposition temperatllr_ and to a higher ambient
pressure than standard.
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The decomposition chamber was designed for a weight flow of 4 pounds

per second, and the unit could pass weight flows up to 7 pounds per second

with smooth and steady operation, with instant starts and stops being

made once the propellant lines were filled. It has been found that for

the decomposition-chamber size and flow rates used (average flow rate

2.5 ib/sec), the catalyst bed would last for about I hour before the bed

deteriorated. With the exit nozzle shown in figure 7 (dj = 2.62 in.)

ratios of Jet total pressure to ambient static pressure up to 5 could be

easily established in the static test facility. It should be noted that

pressure ratios considerably greater than those corresponding to turbo-

Jet operation at transonic speeds (ref. 20) can be obtained in atmospheric

wind tunnels because of the decrease in static pressure with Mach number.

This is illustrated in figure 16 where Jet pressure ratios have been cal-

culated for Mach numbers from 0 to 1.4 as a function of the ideal weight

flow parameter wi/A. The actual Jet pressure ratios obtained in a simu-

lator installation will depend upon the pressure losses in the induction

system and the pressure available with the supply apparatus.

Thrust Measurements

The variation of jet thrust with pressure ratio is presented in

figure 17 for a convergent nozzle having an exit dgameter of 3.20 inches.

Measured thrust is compared with the ideal convergent nozzle thrust and

the ideal thrust for complete isentropic expansion of the primary flow.

The ideal thrusts have been calculated from measured weight flows, jet

total temperatures, and Jet total pressures. The ratio of measured Jet

thrust to the ideal isentropic thrust is also shown in this figure and

has an average value of about 0.97 for this nozzle.

The variation of static thrust coefficient CF, o with Jet pressure

ratio is presented in figure 18 for three convergent nozzles. The static

thrust coefficient nondimensionalizes the data so that all sizes of noz-

zles should be on a single line. The differences between the nozzles are

mainly due to differences in the nozzle discharge coefficients. The data

presented in figures 17 and 18 indicate that the thrust values obtained

with the Jet simulator are in good agreement with the theoretical values

for full-scale convergent nozzles.

CONCLUDING REMARKS

A hydrogen peroxide turbojet-engine-exhaust simulator for powered

model testing in wind tunnels with air exchange has been developed.

The hydrogen peroxide system provides a hot jet with characteristics

that correspond closely to the exhaust of a turbojet engine. This sys-

tem has the advantage of compactness, small propellant lines, and simple
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control of the Jet pressure ratio by varying the propellant flow rate.

The necessary associated equipment needed _o operate the system has

been described. Statlc-test data obtained with the hydrogen peroxide

system show that experimental results with convergent nozzles are in

good agreement with theoretical values and are consistent with convergent

nozzle discharge and thrust coefficients.

Langley Research Center,

National Aeronautics and Space AdminiBtration,

Langley Field, Va., September 18, 1958.
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